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Parrondo games are coin flipping games with the surprising property that
alternating plays of two losing games can produce a winning game. We show
that this phenomenon can be modelled by probabilistic lattice gas automata.
Furthermore, motivated by the recent introduction of quantum coin flipping
games, we show that quantum lattice gas automata provide an interesting defi-
nition for quantum Parrondo games.
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0. INTRODUCTION

The simplest quantum lattice gas automata (QLGA) provide discrete
models for the 1+1 dimensional Dirac equation (1, 2) and the multiparticle
Schrödinger equation. (3) More complicated QLGA can be constructed to
model potentials, (4) inhomogeneities and boundary conditions. (5) In this
talk we motivate the introduction of a QLGA model from a completely
new perspective—Parrondo games.

A Parrondo game is a sequence of plays of two simpler games, each of
which involves flipping biased coins. In Section 1 we review the somewhat
surprising result that even if each of the simpler games is a losing game, an
alternating sequence of them can be a winning game. (6, 7) Meyer has recently
initiated the study of quantum game theory with an example of a coin
flipping game, PQ Penny Flip. (8) This raises the natural question: Is there a
quantum version of Parrondo games? Although the quantum Parrondo



game we construct is not a two player game (as PQ Penny Flip is) it intro-
duces a formalism for coherently iterated games which we expect to be
useful in contexts involving one, two, or more players.

Parrondo invented the coin flipping game, however, to illustrate a
physical phenomenon—Brownian ratchets; (6, 7) in Section 2 we explain this
connection in terms of a probabilistic discrete model—a random walk. This
stochastic microscopic model captures the macroscopic irreversible behav-
ior of ratcheting, but raises the concern that a microscopic quantum model
which is exactly unitary may not be able to do so. (9) The more immediate
difficulty is the absence of any unitary version of a random walk. To get a
‘‘quantizable’’ model we must first generalize to a correlated random
walk, (10) or equivalently, a probabilistic LGA; we explain this in Section 3.

From here it is only a small step—actually an analytic continuation (11)—
to a single particle QLGA. We review the unitary evolution rules in Section 4,
emphasizing the inclusion of potentials which are necessary to model
ratcheting. Section 5 contains the results of simulations which appear to
illustrate quantum ratcheting, and which lead us to answer our motivating
question by interpreting the single particle QLGA with appropriate poten-
tials as a quantum Parrondo game. We conclude in Section 6 with a summary
and some more physical observations.

1. PARRONDO GAMES

Consider games which involve flipping a coin: winning 1 when it lands
head up and losing 1 when it lands tail up. Suppose there are three biased
coins A, B0, and B1, with probabilities of landing head up of pa, p0, and p1,
respectively. Define game A to consist of repeatedly flipping coin A. For
pa <

1
2 , A is a losing game in the sense that if the initial stake is x=0, after t

plays the expected value of the payoff is OxP=t(2pa−1) < 0. Even though
one may win sometimes, in the long run one must expect to lose.

After each flip the payoff x changes by ±1. Define game B to consist
of repeatedly flipping coins B0 and B1: B0 when x — 0 (mod 3) and B1
otherwise. This defines a Markov process on x (mod 3) with transition
matrix

TB=R
0 1−p1 p1

p0 0 1−p1

1−p0 p1 0

S (1)

The equilibrium state, i.e., the eigenvector (v0, v1, v2) of TB with eigenvalue
1 (normalized by vi \ 0, ; vi=1) determines the long time behavior of the
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game: for large t, the expected payoff is OxP=t[(2p0−1) v0+(2p1−1)
(v1+v2)]. Thus B is a fair game iff the matrix

R −1 1−p1 p1

p0 −1 1−p1

2p0−1 2p1−1 2p1−1

S (2)

is singular, i.e., iff

p0=
1−2p1+p

2
1

1−2p1+2p
2
1

(3)

One specific solution to Eq. (3) is (p0, p1)=(
1
10 ,

3
4), but for a Parrondo

game, B should be a losing game, which means choosing p0 and p1 such
that LHS(3) < RHS(3). Figure 1 plots OxP as a function of t for A and B
games defined by pa=

1
2− E, p0=

1
10− E, and p1=

3
4− E, with E=0.005. Each

is clearly a losing game.
Now suppose we combine these games. More precisely, suppose they

are played in the order AABB, repeatedly. Figure 1 plots the expected
result of this game as well. Parrondo’s ‘‘paradoxical’’ observation is that
this combination of two losing games is a winning game! To understand
this phenomenon, rather than attempting to generalize the Markov process
analysis of equations (1)–(3), let us go back to the physical system which
motivated Parrondo.

20 40 60 80 100
t
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1

2
<x>

AABB

A
B

Fig. 1. The expected payoffs for games B, A and AABB as a function of number of plays t.
Although A and B are losing games, the combination AABB is a winning game.
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Fig. 2. The payoff distribution for game A after 100 plays. VA(x) is also graphed, in different
vertical units. The initial distribution concentrated at x=0 has spread and shifted downhill;
the peak is now at −1.

2. BROWNIAN RATCHETS

The payoff x for game A with pa=
1
2 executes an unbiased random

walk on the integers, which is a discrete model for the diffusion equation in
1+1 dimensions: (12)

rt=Drxx (4)

That is, the distribution p(x, t)=Prob(payoff=x at time=t) approxi-
mates r(x, t) in (4) with D=(Dx)2/2Dt. For pa ]

1
2 the random walk is

biased and is a discrete model for diffusion with linear advection: (12)

rt+crx=Drxx (5)

where c=(2pa−1) Dx/Dt. Equation (5) describes Brownian motion of a
particle in a linear potential VA(x)3 −(2pa−1) x; the particle diffuses and
tends downhill, as shown in Fig. 24 for the case pa=

1
2− E simulated in

4 Figures 2–4 correspond to the same exact calculation of the distributions of payoffs for
which the expectation values are plotted in Fig. 1. To compensate for the familiar Z2
‘‘spurious’’ conserved quantity in 1+1 dimensional LGA, (13) the ‘‘t=100’’ distributions
plotted in Figs. 2–4 are actually [p(x, 99)+2p(x, 100)+p(x, 101)]/4.

Section 1.
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Similarly, game B corresponds to Brownian motion of a particle in a
piecewise linear potential. For a fair game, i.e., for p0 and p1 satisfying
Eq. (3), the potential (as well as its gradient) is periodic:

V(x)3 ˛ −(2p0−1) x if |x−3n| [ b, n ¥ Z

−(2p1−1) x otherwise
(6)

Here we assume 0 [ p0 <
1
2 < p1 <min{1, (3−4p0)/2} and hence

0 < b=
3(2p1−1)
4(p1−p0)

< 1

makes the piecewise linear potential continuous. For the losing game B
simulated in Section 1, subtracting E from the fair game probabilities 1

10 and
3
4 for p0 and p1 corresponds to adding the A game potential to the fair B
game potential of (6): VB(x)=V(x)+VA(x). In this potential, as shown in
Fig. 3,4 the particle diffuses, concentrates in valleys, and tends downhill.

Finally, Fig. 44 shows the distribution of payoffs for the combined
AABB game. Alternating the games models a ‘‘flashing’’ potential, (14) which
allows diffusion uphill during A to be concentrated into uphill valleys by B,
leading to an average movement uphill. This phenomenon illustrates the use
of a ratchet as a thermal engine, first explained by Smoluchowski (15) and
subsequently discussed by Feynman, (16) by Parrondo and Español, (17) and
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Fig. 3. The payoff distribution for game B after 100 plays. VB(x) is also graphed, in different
vertical units. The initial distribution concentrated at x=0 has spread and concentrated in the
valleys of VB, but also shifted downhill.
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Fig. 4. The payoff distribution for the alternating game AABB after 100 plays. Although the
initial distribution has spread and concentrated, it has shifted uphill.

by Abbott, Davis and Parrondo. (18) Such Brownian ratchets have been
created experimentally in electromechanical(19) and optical (20) systems.

Recognizing Parrondo games as Brownian ratchets raises concerns
about constructing quantum mechanical versions of them: (9) the thermal
ratchet engine works only for systems which are out-of-equilibrium (they
require heat baths at two different temperatures) and dissipative (the pawl
must bounce inelastically off the ratchet). It is hard to imagine exactly
unitary systems modelling either of these properties. In fact, recent theore-
tical analysis (21) and experimental observation (22) of quantum ratcheting
have depended on some degree of dissipation/decoherence. Our goal, in
contrast, is an exactly unitary model.

3. CORRELATED RANDOM WALKS

The first obstacle we must overcome is the non-existence of a quantum
random walk. More precisely, there is no nontrivial unitary band diagonal
matrix which would describe the transition amplitudes from each lattice
site to some neighboring set of lattice sites. (23) The intuition for this result is
that the evolution of nontrivial classical random walks is not invertible and
unitarity is simply the quantum manifestation of invertibility.

To construct an invertible model we must add an extra bit of infor-
mation to each lattice site in Z, the direction from which the particle
reached that site. Figure 5 illustrates such a model: the arrows pointing to
lattice sites record the direction from which the site was reached and the
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p

1-p

Fig. 5. Evolution rules for a correlated random walk. The reflected rules may or may not
have the same probabilities; if they do not, the random walk is biased.

(probabilistic) evolution rule shown is that the particle has probability p of
continuing in the same direction and probability 1−p of changing direc-
tion. This is a correlated random walk: (10) the probabilities for successive
steps are not independent for p ] 1

2. For p=1
2, however, they are

uncorrelated, so this model specializes to the standard random walk. To
obtain an uncorrelated but biased random walk, the probabilities should be
independent of the previous outcome, but not symmetric under reflection
(i.e., parity).

We can also think of this as a probabilistic LGA. The extra bit of
information is the particle momentum and, as we have described it, one
timestep of the evolution consists of two parts: scattering, defined by a
stochastic matrix

S=

P Q

P R p 1−pS
Q 1−p p

(7)

followed by advection. Although this is the opposite order to the usual way
we think of LGA evolution, the two only differ by a time translation of
‘‘half a timestep.’’ In fact, long before the earliest LGA were constructed to
model fluid flow, (24) Goldstein (25) and Kac (26) showed that this probabilistic
LGA is a discrete model for a physical system—a 1+1 dimensional wave
equation with dissipation:

1
v2
ftt+

2a
v2
ft−fxx=0

where v=Dx/Dt and a=(1−p)/Dt. The aQ 0 limit of this ‘‘telegrapher
equation’’ is the wave equation, and the a, vQ. limit with v2/2a=D is
the diffusion equation (4).

This correlated random walk/probabilistic LGA corresponds to a
generalization of coin flipping games in which the probability of winning
each play depends on the outcome of the previous play, and thus provides
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a framework in which to generalize Parrondo games. Parrondo, Harmer
and Abbott have also introduced a generalization in which the probability
of winning each play depends on the history of the game to that point—the
past two outcomes in their case—although their motivation is to eliminate
the x dependence of the game. (27) Our motivation is different: we want to
preserve this dependence, since it corresponds to a spatially varying poten-
tial, but use the generalization instead to construct unitary versions of these
games.

4. QUANTUM LATTICE GAS AUTOMATA

Now that we have a stochastic scattering matrix (7), it is straightfor-
ward to replace it with a unitary matrix

U=

P Q

P R cos h i sin h S
Q i sin h cos h

(8)

although we must reinterpret the state space of the LGA to do so. Let
|x, aP denote the presence of a particle at lattice site x ¥ Z with momentum
a ¥ {±1}. States of the probabilistic LGA are convex combinations

f=C fx, a |x, aP, with 0 [ fx, a ¥ R and C fx, a=1 (9)

so that fx, a is the probability that the particle is in the state |x, aP. Evolu-
tion consists of scattering according to (7):

|x, aPW p |x, aP+(1−p) |x, −aP

followed by advection

W p |x+a, aP+(1−p) |x−a, −aP

extended by linearity to general states f (9).
For a QLGA, the general one particle state is a vector in Hilbert

space: (2, 4, 5, 28)

k=C kx, a |x, aP, with kx, a ¥ C and C |kx, a |2=1 (10)

so that kx, a is the amplitude of the state |x, aP and |kx, a |2 is the probability
that, if measured in this basis, the particle is observed to be in state |x, aP.
Quantum evolution consists of scattering according to (8):

|x, aPW cos h |x, aP+i sin h |x, −aP
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followed by advection

W cos h |x+a, aP+i sin h |x−a, −aP

extended by linearity to general states k (10). This evolution is unitary
because the scattering stage is, and because the advection is deterministic.
Furthermore, we can include a potential with multiplication by an
x-dependent phase e−iV(x); (4, 28) the evolution remains unitary. The problem
thus reduces to picking parameters h, V(x, t) to achieve ratcheting—which
we can also interpret as a quantum Parrondo phenomenon.

5. QUANTUM PARRONDO GAMES

Since we are going to exhibit our results as outputs of simulations, we
should first remark that although we may think of our single particle
QLGA as a particle moving from lattice site to lattice site with specified
amplitudes, on a classical computer we must simulate it using a lattice
Boltzmann method. That is, we must keep track of the whole vector k and
evolve that at each timestep. In fact, this is how we performed the exact
computations for the probabilistic LGA for Figs. 1–4. In the probabilistic
case we have the option of simulating it as a lattice gas and averaging over
multiple runs—the results of Harmer and Abbott were obtained this way,
using 50,000 runs (7)—but for the quantum case we do not have this option.

We set h=p
4 in (8) so that the magnitudes of the amplitudes are all the

same—this is the analogue of an unbiased, uncorrelated random walk. The
initial state is an equal superposition of |0, −1P and |0,+1P so that there is
the same initial capital—zero—as in the classical simulations, and no bias
for the initial momentum/state at t=−1. Figure 6 shows the expectation
value OxP as a function of t for

VA(x)=
2p
5000

x and VB(x)=
p

3
51−1

2
(x mod 3)6+VA(x)

As in the classical case, VA is a linear potential, as shown in Fig. 7, and VB
is a piecewise linear 3-periodic potential superimposed on VA, as shown in
Fig. 8. Figure 6 shows that the behavior is similar to the classical cases:
Potentials VA and VB individually force OxP downhill, but the flashing
pattern—BAAAA, repeated—drives OxP uphill. (We chose the parameters
in these potentials to produce expectation value curves similar to those
shown in the classical cases; they differ by only about a factor of 2 after
100 plays.) As shown in Fig. 7, the evolution in VA is biased downhill, but
looks very little like the diffusive evolution of Fig. 2. Similarly, as shown in
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Fig. 6. The expected payoffs for quantum games B, A and BAAAA as a function of number
of plays t. Although A and B are losing games, the combination BAAAA, played repeatedly, is
a winning game over this range of numbers of plays. These results illustrate the same ‘‘para-
doxical’’ phenomenon as those in Fig. 1 do for the classical Parrondo game.
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Fig. 7. The payoff distribution for quantum game A after 100 plays. VA(x) is also graphed,
in different vertical units. The initial distribution concentrated at x=0 contained equal left
and right moving amplitudes which have shifted to peaks at about ±68 and spread. Inter-
ference has created a series of peaks at smaller absolute payoffs and the average has shifted
slightly downhill.
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Fig. 8. The payoff distribution for quantum game B after 100 plays. VB(x) is also graphed,
in different vertical units. The initial distribution has shifted left and right, and spread. VB has
caused a more complicated interference pattern than VA, but the average has also shifted
downhill.
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Fig. 9. The payoff distribution for the alternating game BAAAA after 100 plays. The distri-
bution still shows the results of interference, but the large positive peak slightly outweighs the
large negative peak to give an average which has moved uphill.
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Fig. 8, the evolution in VB is biased downhill, and concentrates periodically,
but otherwise looks quite different than the diffusive evolution of Fig. 3.
Finally, as shown in Fig. 9, flashing the potentials in the order BAAAA,
repeatedly, biases the evolution uphill, but still in a way unlike the classical
case of Fig. 4. Interpreting this QLGA as a quantum Parrondo game,
Fig. 9 shows that this is a game for gamblers with high tolerance for
risk—the large probability of a big loss is just barely outweighed by the
slightly larger probability of a big win.

6. CONCLUSIONS

By interpreting classical Parrondo games as probabilistic LGA, we
have motivated the introduction of QLGA to answer the question: Are
there quantum Parrondo games? The simulations shown in Section 5
appear to answer this question in the affirmative, as well as to demonstrate
discrete quantum ratcheting, despite the absence of dissipation.

The quadratic growths of OxP shown in Fig. 6, however, should be worri-
some since the single particle QLGA discretizes the Dirac equation,(2, 4, 28)

which is relativistic. If OxP were to continue to grow quadratically, it would
eventually exit the lightcone—not relativistic behavior. Figure 10 shows the
results of simulation out to t=5000. We see that the expectation values do
not continue to grow quadratically; rather their evolution is oscillatory and
the small t quadratic growth is that of A(cos(bt)−1). In fact, the QLGA
with potential VA discretizes the ‘‘Dirac oscillator’’ (29) which can be solved
exactly, and in which wave packets are known to evolve approximately
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Fig. 10. The expected payoffs for quantum games A, B and BAAAA as a function of
number of plays t. Although the curves are periodic, for random times (or on average), A and
B have negative expected payoffs while BAAAA has a positive expected payoff.
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periodically. (30) For random stopping times—i.e., measurement times—
however, both the A and B games are losing games and the BAAAA
quantum game is a winning game. In this sense the QLGA is a quantum
Parrondo game. In the broader context of game theory, it also illustrates
a coherently repeated quantum game—and the possibility of interference
between sequences of plays. This kind of construction should generalize to,
for example, a quantum version (31) of the MINORITY game. (32)

More physically, Aharonov, Ambainis, Kempe and Vazirani also use
random stopping times to obtain a related result: quantum (unitary) simu-
lation of sampling from equilibrium distributions of diffusion processes on
graphs with constant vertex degree. (33) The quadratic speedup they find is
due to the linear in time (rather than `t as in the classical random walk)
spread of the wave function illustrated in Fig. 7. (34) More generally, Childs,
Farhi and Gutmann demonstrate the same quadratic speedup for a contin-
uous time quantum process on certain graphs, without the constant vertex
degree restriction. (35) Our results, and these, provide specific answers to the
general question of whether quantum computers (see, e.g., ref. 36) can cal-
culate properties of classical systems more efficiently than can classical
computers. (37)
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